
Graph-Based Optimization Modeling
Language

Bardhyl Miftari, Mathias Berger, Hatim Djelassi, Damien Ernst

Mar 28, 2024

CONTENTS:

1 About GBOML 1

2 Installation 3
2.1 Installation via pip and PyPI . 3
2.2 Manual Installation . 3
2.3 Installing Solvers . 4

2.3.1 Gurobi . 4
2.3.2 CPLEX . 4
2.3.3 Xpress . 4
2.3.4 Cbc/Clp . 4
2.3.5 DSP . 5
2.3.6 HiGHS . 5

2.4 Testing . 5

3 Abstract GBOML problem 7

4 Grammar Basics 9
4.1 Identifiers . 9
4.2 Numbers . 9
4.3 Operators . 9
4.4 Expressions . 10
4.5 Logical Conditions . 10
4.6 Comments . 11

5 Block Definitions 13
5.1 Time Horizon . 14
5.2 Global Parameters . 14
5.3 Nodes . 15

5.3.1 Parameters . 15
5.3.2 Variables . 16
5.3.3 Constraints . 16
5.3.4 Objectives . 18

5.4 Hyperedges . 19
5.4.1 Parameters . 20
5.4.2 Constraints . 20

6 Advanced Features 21
6.1 Hierarchical Models . 21
6.2 Importing Nodes and Hyperedges . 24

6.2.1 Importing Nodes . 24
6.2.2 Importing Hyperedges . 25

i

7 Useful Idioms 27
7.1 Repeating Data . 27
7.2 Round Down Integer Division . 27

8 How to Use 29
8.1 Command Line Interface . 29
8.2 Python Interface . 31
8.3 Solver APIs . 38

9 Examples 41
9.1 Microgrid Example . 41

9.1.1 Problem Description . 41
9.1.2 GBOML Implementation . 41
9.1.3 Running the Example . 46

9.2 Remote Hub Example . 46
9.2.1 Problem Description . 46
9.2.2 Running the Example . 48

9.3 Python API Example . 49
9.4 Models and papers that use GBOML . 50

10 Citing GBOML 51

11 Indices and tables 53

Index 55

ii

CHAPTER

ONE

ABOUT GBOML

The Graph-Based Optimization Modeling Language (GBOML) is a modeling language for mathematical programming
designed and implemented at the University of Liège, Belgium. GBOML enables the easy implementation of a broad
class of structured mixed-integer linear programs typically found in applications ranging from energy system planning
to supply chain management. More precisely, the language is particularly well-suited for representing problems involv-
ing the optimization of discrete-time dynamical systems over a finite time horizon and possessing a block structure that
can be encoded by a hierarchical hypergraph. The language combines elements of both algebraic and object-oriented
modeling languages in order to facilitate problem encoding and model re-use, speed up model generation, expose
problem structure to specialised solvers and simplify post-processing. The GBOML parser, which is implemented in
Python, turns GBOML input files into hierarchical graph data structures representing optimization models. The asso-
ciated tool provides both a command-line interface and a Python API to construct models, and directly interfaces with
a variety of open source and commercial solvers, including structure-exploiting ones.

1

Graph-Based Optimization Modeling Language

2 Chapter 1. About GBOML

CHAPTER

TWO

INSTALLATION

Two installation options are currently available. First, GBOML can be installed via the pip package manager and the
Python Package Index (PyPI). Second, GBOML can be installed manually by cloning the git repository and installing
the requirements. In addition, solvers must be installed separately, as described below.

2.1 Installation via pip and PyPI

GBOML can be installed via pip and the Python Package Index by typing the following commands in a terminal window:

pip install gboml

All dependencies (numpy, scipy and ply) will be automatically installed and the package should be ready for use.

2.2 Manual Installation

The git repository can be found here. The repository can be cloned by typing the following commands in a terminal
window:

git clone https://gitlab.uliege.be/smart_grids/public/gboml

Then, a local installation can be performed by typing the following commands in a terminal window:

pip install .

If you only want GBOML as an uninstalled package, installing the requirements can be performed by typing the fol-
lowing commands:

pip install -r requirements.txt

3

https://gitlab.uliege.be/smart_grids/public/gboml

Graph-Based Optimization Modeling Language

2.3 Installing Solvers

GBOML currently interfaces with Gurobi, CPLEX, Xpress, Cbc/Clp, HiGHS and DSP. Only one of these is required to
solve a GBOML model. Gurobi, CPLEX and Xpress are commercial solvers, while Cbc/Clp is an open-source solver.
DSP is an experimental open-source project relying on Gurobi, CPLEX and SCIP to implement generic structure-
exploiting algorithms (e.g., Dantzig-Wolfe, dual and Benders decompositions).

2.3.1 Gurobi

To use Gurobi, you must first install it. Instructions can be found here. Once the solver is installed, the Python API can
be downloaded by typing the following commands in a terminal window:

python -m pip install -i https://pypi.gurobi.com gurobipy

Other installation options can be found in this post. Note that a license is also required to use Gurobi. Free licenses
can be requested for academics, as discussed in the following post.

2.3.2 CPLEX

To use CPLEX, you must first install it. Instructions can be found here. Once the solver is installed, the Python API
can be downloaded by typing the following commands in a terminal window:

pip install cplex

Note that a license is also required to use CPLEX. Licenses can be obtained for free for academics, as discussed in the
following post.

2.3.3 Xpress

To use Xpress, you must first install it. Instructions can be found here. Once the solver is installed, the Python API can
be downloaded by typing the following commands in a terminal window:

pip install xpress

Additional information can be found here. Note that a license is also required to use Xpress.

2.3.4 Cbc/Clp

To use Cbc or Clp, you must first install them. Instructions can be found here. The CyLP package is used to interface
with the solver. This package can be installed by typing the following commands in a terminal window:

pip install cylp

4 Chapter 2. Installation

https://www.gurobi.com/documentation/9.5/quickstart_windows/software_installation_guid.html
https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python-
https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-2010
https://www.ibm.com/support/pages/ibm-ilog-optimization-academic-initiative
https://www.fico.com/fico-xpress-optimization/docs/latest/insight_quick_install/GUID-2D3D6579-9CCA-4605-8C00-E91B6FB846EB.html
https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/python/HTML/chIntro_sec_secInstall.html
https://github.com/coin-or/Cbc

Graph-Based Optimization Modeling Language

2.3.5 DSP

To use DSP, you must first install it. At present, DSP developers recommend installing it on a Mac or Linux machine.
Installing DSP with the Windows Subsystem Linux UBUNTU 18.04 distribution was tested and found to work too.

The recommended installation steps work as follows. First, the DSP repository must be cloned into a directory of
choice. This can be achieved by creating a directory named, e.g., your_DSP_directory:

mkdir your_DSP_directory
cd your_DSP_directory

and cloning the DSP repository recursively:

git clone --recursive https://github.com/Argonne-National-Laboratory/DSP.git

Then, the absolute paths of the directories storing the libraries and header files of the solvers used to build
DSP (e.g., Gurobi, CPLEX or SCIP) must be specified in a file named UserConfig.cmake, which must
be placed in the cloned DSP directory. Note that these paths must be consistent with that of the direc-
tory in which the solver was installed in the first place. For example, on Mac, CPLEX library files may be
stored in /Applications/CPLEX_Studio1210/cplex/lib/x86-64_osx/static_pic, while header files may be stored in
/Applications/CPLEX_Studio1210/cplex/include/ilcplex. Gurobi libraries and header files may be stored in /Li-
brary/gurobi903/mac64/lib and /Library/gurobi903/mac64/include, respectively. In addition, it may sometimes be
necessary to also add some of these libraries and DSP dependencies on the library path (e.g., by setting the value of the
DYLD_LIBRARY_PATH environment variable in your bash profile on Mac) prior to proceeding to the build stage.

The next installation steps make use of cmake and make to build the DSP executable and library. Once cmake is
installed, the following commands can be typed in a terminal window, starting in the cloned DSP directory:

mkdir build
cd build
cmake ..
make

If the make worked properly, an executable called runDsp and a shared library named libDsp should be created in the
src subfolder of the build directory. Additional information can be found here.

2.3.6 HiGHS

To install HiGHS please download the solver from https://highs.dev/. The Python API is embedded in GBOML.
However, you need the HiGHS shared object on your library path.

2.4 Testing

To manually test your installation, you can type the following commands in a terminal window:

python test.py

Note that running test.py tests all solver APIs (except that of DSP, which is still experimental). Therefore, installing
only one solver will not result in all tests being passed.

2.4. Testing 5

https://cmake.org/install/
https://github.com/Argonne-National-Laboratory/DSP/blob/master/docs/install.md
https://highs.dev/

Graph-Based Optimization Modeling Language

6 Chapter 2. Installation

CHAPTER

THREE

ABSTRACT GBOML PROBLEM

The modeling language is particularly well-suited for representing problems involving the optimization of discrete-
time dynamical systems over a finite time horizon and exhibiting a natural block structure that may be encoded by a
hierarchical hypergraph. A hypergraph abstraction is therefore employed to represent them. Nodes can therefore be
viewed as hierarchical hypergraphs themselves representing optimization subproblems, while hyperedges express the
relationships between nodes. A global discretized time horizon and associated set of time periods common to all nodes
are also defined. Each node is equipped with a set of so-called internal and external (or coupling) variables. A set
of constraints may be also defined for each node, along with a local objective function representing its contribution
to a system-wide objective. Finally, for each hyperedge, constraints involving the coupling variables of the nodes
to which it is incident are defined in order to express the relationships between nodes. In the following paragraphs,
we formally define variables, constraints, objectives and formulate the abstract model that encapsulates the class of
problems considered. For the sake of clarity, we do so for a model that can be represented by a hypergraph with a
single layer (i.e., there is one level in the hierarchy).

Let 𝒢 = (𝒩 , ℰ) be a (possibly directed) hypergraph encoding the block structure of the problem at hand, with node
set 𝒩 and hyperedge set ℰ ⊆ 2𝒩 (i.e., each hyperedge corresponds to a subset of nodes), let 𝑇 be the time horizon
considered and let 𝒯 = {0, 1, . . . , 𝑇 − 1} be the associated set of time periods. Let 𝑋𝑛 ∈ 𝒳𝑛 and 𝑍𝑛 ∈ 𝒵𝑛 denote
the collection of internal and coupling variables defined at node 𝑛 ∈ 𝒩 . Note that variables may take values in discrete
or continuous sets. In addition, for any hyperedge 𝑒 ∈ ℰ , let 𝑍𝑒 = {𝑍𝑛|𝑛 ∈ 𝑒} denote the collection of coupling
variables associated with each node to which this hyperedge is incident.

Let 𝐹𝑛 denote the function defining the local objective at node 𝑛 ∈ 𝒩 . In this paper, we consider scalar objectives of
the form

𝐹𝑛(𝑋𝑛, 𝑍𝑛) = 𝑓𝑛
0 (𝑋

𝑛, 𝑍𝑛) +
∑︁
𝑡∈𝒯

𝑓𝑛(𝑋𝑛, 𝑍𝑛, 𝑡),

where 𝑓𝑛
0 and 𝑓𝑛 are (scalar) affine functions of 𝑋𝑛 and 𝑍𝑛.

Both equality and inequality constraints may be defined at each node 𝑛 ∈ 𝒩 . More precisely, an arbitrary number
of constraints that can each be expanded over a subset of time periods may be defined. Hence, we consider equality
constraints of the form

ℎ𝑛
𝑘 (𝑋

𝑛, 𝑍𝑛, 𝑡) = 0, ∀𝑡 ∈ 𝒯 𝑛
𝑘

with (scalar) affine functions ℎ𝑛
𝑘 and index sets 𝒯 𝑛

𝑘 ⊆ 𝒯 , 𝑘 = 1, . . . ,𝐾𝑛, as well as inequality constraints

𝑔𝑛𝑘 (𝑋
𝑛, 𝑍𝑛, 𝑡) ≤ 0, ∀𝑡 ∈ 𝒯 𝑛

𝑘 ,

with (scalar) affine functions 𝑔𝑛𝑘 and index sets 𝒯 𝑛
𝑘 ⊆ 𝒯 , 𝑘 = 1, . . . , �̄�𝑛.

Likewise, both equality and inequality constraints may be defined over any hyperedge 𝑒 ∈ ℰ . These constraints,
however, can only involve the coupling variables of the nodes to which hyperedge 𝑒 ∈ ℰ is incident (i.e., nodes such
that 𝑛 ∈ 𝑒). More precisely, let 𝐻𝑒 and 𝐺𝑒 be affine functions of 𝑍𝑒 used to define the equality and inequality
constraints associated with a given hyperedge 𝑒 ∈ ℰ .

7

Graph-Based Optimization Modeling Language

Using this notation, the class of problems that can be represented in this framework reads

min
∑︀

𝑛∈𝒩 𝐹𝑛(𝑋𝑛, 𝑍𝑛)
s.t. ℎ𝑛

𝑘 (𝑋
𝑛, 𝑍𝑛, 𝑡) = 0, ∀𝑡 ∈ 𝒯 𝑛

𝑘 , 𝑘 = 1, . . .𝐾𝑛, ∀𝑛 ∈ 𝒩
𝑔𝑛𝑘 (𝑋

𝑛, 𝑍𝑛, 𝑡) ≤ 0, ∀𝑡 ∈ 𝒯 𝑛
𝑘 , 𝑘 = 1, . . . �̄�𝑛, ∀𝑛 ∈ 𝒩

𝐻𝑒(𝑍𝑒) = 0, ∀𝑒 ∈ ℰ
𝐺𝑒(𝑍𝑒) ≤ 0, ∀𝑒 ∈ ℰ
𝑋𝑛 ∈ 𝒳𝑛, 𝑍𝑛 ∈ 𝒵𝑛, ∀𝑛 ∈ 𝒩 .

Fig. 3.1: Schematic representation of the abstract GBOML problem.

Fig. 3.1 schematically illustrates the class of problems that can be modelled in this framework.

8 Chapter 3. Abstract GBOML problem

CHAPTER

FOUR

GRAMMAR BASICS

The basic elements of the grammar include identifiers, numbers, operators, expressions and logical conditions. These
different elements can be used in various code blocks in order to construct a complete model. The following elements
are introduced in this section:

4.1 Identifiers

Identifiers are used to name different kinds of language objects such as nodes, hyperedges or variables. Identifiers may
contain letters, numbers, underscores, and dollar signs but must begin with a letter or an underscore. Accordingly, the
following identifiers are all valid: mynode1, _SolarPlant_2 and HydroStorage_a.

Besides these lexical requirements, identifiers must also be unique in their respective scope. Hence, no two nodes
may have the same identifier since this would prohibit the unambiguous identification of a particular node. Similarly,
variables and parameters may not have the same identifier as a node or other variables and parameters belonging to
the same node. However, the same identifier may be re-used to define variables or parameters that belong to different
nodes.

4.2 Numbers

GBOML recognizes floating-point numbers and integers. Depending on the context, an integer may be called for, but
in contexts where a floating-point number is required, an integer will also be accepted and converted to a floating-
point number automatically. It should be noted that scientific notation is supported and automatically converted to
floating-point numbers. Accordingly, the following are considered floating-point numbers,

1e-5, -2.5e-10, 2e10.

4.3 Operators

GBOML provides the following operators for elementary floating-point arithmetic, which are listed in order of decreas-
ing precedence:

1. Exponentiation: **

2. Multiplication: * and Division: /

3. Addition: + and Subtraction: -

Operator precedence can be overridden by using parentheses (and). Besides these elementary arithmetic operators,
GBOML provides the modulo operator and the sum operator as native functions:

9

Graph-Based Optimization Modeling Language

• Modulo: mod(<dividend>, <divisor>)

• Sum: sum(<expression> for <id> in [<start>: <end>])

In addition, a set of comparison operators are available in the language:

• Equal to: ==

• Not equal to: !=

• Less than or equal to: <=

• Greater than or equal to: >=

• Less than: <

• Greater than: >

Finally, a set of logical operators are available, listed below in order of decreasing precedence:

1. Negation: not

2. Conjunction: and

3. Disjunction: or

Note that the precedence of logical operators can also be overriden by using parentheses.

4.4 Expressions

Algebraic expressions are used to construct the different components of a model, such as its constraints and objective.
Expressions typically involve numbers and identifiers referring to parameters and variables, along with some of the
operators introduced previously. While numbers are always scalar, variables and parameters may be either scalars or
vectors (of any length). Their entries are accessed via an index written in brackets [and]. For the sake of illustration,
let v be an identifier referring to a vector quantity of length L. Then, the entries of v are accessed via

v[0], v[1], v[2], . . . , v[L-1].

Note that the first index is 0 and not 1.

Let x and v be the identifiers of a scalar quantity and a vector quantity, respectively. Then, the following expressions
are valid in GBOML:

x**2 - 6.5*x - 9, sum((i - 2.5)/3 for i in [0:10]), v[0] + v[mod(3,2)]

Note that the above expressions contain whitespace characters, which are not required. Indeed, all kinds of whitespace
characters (space, tabulation, line feed, form feed, and carriage return) are ignored by the GBOML compiler.

4.5 Logical Conditions

Besides their immediate use in model equations, expressions can be further used to construct logical conditions. More
specifically, logical conditions are constructed from expressions, comparison operators, and logical operators.

Let t denote an integer. Then, the following logical conditions are valid in GBOML:

t > 0 and t <= 10, t < 2 or t > 4, not mod(t,5) == 0.

Note that conditions can be used to selectively enforce constraints over a subset of indices, which is discussed when
introducing the #CONSTRAINTS block.

10 Chapter 4. Grammar Basics

Graph-Based Optimization Modeling Language

4.6 Comments

Comments are initiated by a double forward slash // and terminated by a line feed. The content that follows is ignored
by the compiler.

4.6. Comments 11

Graph-Based Optimization Modeling Language

12 Chapter 4. Grammar Basics

CHAPTER

FIVE

BLOCK DEFINITIONS

In order to implement an instance of the abstract GBOML problem, the model must be encoded in an input file writ-
ten in the GBOML grammar. This input file is structured into blocks, which are introduced by one of the following
keywords, namely #TIMEHORIZON, #GLOBAL, #NODE, and #HYPEREDGE. The time horizon information is given in the
#TIMEHORIZON block, which must be the first one defined in the input file. Global parameters must be defined in the
#GLOBAL block, which must come in second position. Then, each node can be defined in a #NODE block, while each
hyperedge can be defined in a #HYPEREDGE block. Note that the order in which #NODE and #HYPEREDGE blocks appear
in the input file does not matter (i.e., hyperedge definitions may precede node definitions and vice-versa). Thus, an
input file is typically structured as follows:

#TIMEHORIZON
// time horizon definition

#GLOBAL
// global parameters

#NODE <identifier>
// first node definition

#NODE <identifier>
// second node definition

#HYPEREDGE <identifier>
// first hyperedge definition

// possibly further node blocks

#HYPEREDGE <identifier>
// second hyperedge definition

// possibly further hyperedge blocks

These different blocks are further discussed in this section:

13

Graph-Based Optimization Modeling Language

5.1 Time Horizon

The time horizon T defines the length of the optimization horizon (i.e., the number of time periods considered). This
definition is contained in the #TIMEHORIZON block, which is the first one that should appear in a GBOML file. This
block has the following structure:

#TIMEHORIZON
T = <expression>;

Therein, <expression> is an algebraic expression that should evaluate to a positive integer. If <expression> eval-
uates to a positive but non-integral value, it will be rounded to the closest integer automatically and a warning will be
raised. Expressions that cannot be evaluated and expressions that evaluate to a negative value are not permitted. In
addition, since the #TIMEHORIZON block is the first block of any input file and no parameters can been defined before
it, <expression> may not depend on any parameters. An example of a valid #TIMEHORIZON block is given below:

#TIMEHORIZON
T = 24*5.5+6;

The definition of a time horizon has two effects on the remainder of the model. First, the time horizon can be addressed
as a parameter anywhere in the model by referring to its identifier T. Accordingly, the identifier T is reserved and cannot
be re-used for the definition of nodes, variables, or parameters in the remainder of the model. Second, constraints and
objectives can be automatically expanded over the time full horizon by using the identifier t as an index with vector
variables. In other words, the constraints or objectives that use t as an index are automatically expanded for each
t ∈ {0, 1, ..., 𝑇 − 1}. Accordingly, t is a reserved identifier that cannot be used for any other purpose.

5.2 Global Parameters

The non-mandatory #GLOBAL block contains the definitions of parameters that can be accessed anywhere in the model.
This block is structured as follows:

#GLOBAL
// global parameter definitions

A parameter definition maps an identifier to a fixed value, which may be either a scalar or a vector. The identifier must
be unique within a given #GLOBAL block and a value can be assigned to a parameter through one of the following three
syntax rules:

< identifier > = < expression >;
< identifier > = { < term > , < term > ,...};
< identifier > = import " < filename >";

First, a scalar parameter is defined according to the first rule. Therein, <expression> may be a scalar expression
that evaluates to any floating-point number. In particular, it may contain global parameters that have been defined
previously. If the parameter definition is valid with respect to these rules, a parameter named <identifier> will be
created and assigned the value of <expression>. Second, a vector parameter can be defined directly by providing a
comma-separated list of values according to the second rule. Therein, each <term> may be a floating-point number, a
previously-defined scalar parameter, or an entry of a previously-defined vector parameter. The resulting vector param-
eter can be indexed in order to retrieve its constituent entries. Third, a vector parameter can be defined by providing an
input file according to the third rule. Therein, <filename> refers to an input file in one of several delimiter-separated
formats. The supported delimiter characters are comma, semicolon, space, and line feed. In contrast to the direct way of
defining a vector parameter, the input file may only contain floating-point values and may not refer to other parameters.

Given these syntax rules, the following is an example of a valid #GLOBAL block:

14 Chapter 5. Block Definitions

Graph-Based Optimization Modeling Language

#GLOBAL
pi = 3.1416;
two_pi = 2* pi ;
data = import " data . csv ";
len_data = 23;
angles = {0 , data [2] , two_pi };
sum_data = sum (data [i] for i in [0: len_data -1]) ;

Notably, the example makes use of the fact that previously-defined parameters can be employed to define new parame-
ters. Furthermore, the parameters defined in this block can be accessed in any other block by referring to their identifier
with the prefix global. In other words, all global parameters are referred to as:

global.<parameter identifier>

in the blocks that follow their definition.

5.3 Nodes

In the hypergraph abstraction of optimization problems underpinning the GBOML language, nodes represent optimiza-
tion subproblems. Hence, each node has its own set of parameters. It is also equipped with a set of variables, which are
split into internal and external (or coupling) variables. In addition, a set of constraints can be defined for each node,
along with a local objective function representing its contribution to a system-wide objective.

A unique identifier must be assigned to each #NODE block, and such a block is further divided into code blocks where
parameters, variables, constraints, and objectives can be defined. Each of these blocks is introduced by one of the
following keywords, namely #PARAMETERS, #VARIABLES, #CONSTRAINTS, and #OBJECTIVES. A typical #NODE block
is therefore structured as follows:

#NODE <node identifier>
#PARAMETERS
// parameter definitions
#VARIABLES
// variable definitions
#CONSTRAINTS
// constraint definitions
#OBJECTIVES
// objective definitions

These different code blocks are discussed in further detail below.

5.3.1 Parameters

The parameters defined within a given #NODE block respect the same rules as those defined in the #GLOBAL block.
However, node parameters are local to the present node and parameters defined in different nodes cannot be accessed
in this scope.

For the sake of illustration, the following #PARAMETERS block is valid in GBOML:

#PARAMETERS
gravity = 9.81;
speed = import "speed.txt";

5.3. Nodes 15

Graph-Based Optimization Modeling Language

5.3.2 Variables

Variables are declared with one of the two keywords internal and external. While internal variables are meant
to model the internal state of a node, external variables are meant to model the interaction between different nodes.
That is, the coupling between nodes is modeled by imposing constraints on their external variables (which is further
discussed when introducing #HYPEREDGE blocks). In addition, variables can represent either a scalar or a vector. The
syntax for declaring variables in GBOML is as follows:

internal : <identifier>;
external : <identifier>;
internal : <identifier> [<expression>];
external : <identifier> [<expression>];

Variables defined only by an identifier are scalar variables, with the identifier giving its name to the variable (Rules 1
and 2). An expression can be added after the identifier to declare a vector variable and specify its length (Rules 3 and
4).

Furthermore, variables can be of different types, which can be specified by using one additional keyword when declaring
a variable, namely continuous, integer or binary. Note that if no keyword is specified, variables are assumed to
be continuous by default.

Given these syntax rules, the following #VARIABLES block is valid in GBOML:

#VARIABLES
internal integer : x; // internal integer scalar variable
internal binary : y[T]; // internal binary variable vector of size T
external : inflow[1000]; // external continuous variable vector of size 1000
external : outflow[1000]; // external continuous variable vector of size 1000

5.3.3 Constraints

The syntax rules for the definition of basic equality and inequality constraints are as follows:

<expression> == <expression>;
<expression> <= <expression>;
<expression> >= <expression>;

Therein, both the left-hand side and the right-hand side of the constraints are general expressions while the type of the
constraint is indicated by the comparison operator used. Furthermore, in line with the fact that parameter and variable
definitions are local to a given node, constraints defined in a #NODE block must not reference quantities that are defined
in other nodes.

An identifier can be also be assigned to constraints when defining them. The following syntax can be used to do so:

<constraint identifier>: <constraint>;

Assigning an identifier to constraints makes it possible to uniquely identify them and query additional information from
the solver (e.g., retrieve dual variables and slacks).

Given these syntax rules, the following is an example of valid constraint definitions within an appropriate node and
time horizon context:

#TIMEHORIZON
T = 2;

(continues on next page)

16 Chapter 5. Block Definitions

Graph-Based Optimization Modeling Language

(continued from previous page)

#NODE mynode
#PARAMETERS
a = {2,4};
#VARIABLES
internal : x[T];
external : outflow[T];
#CONSTRAINTS
initial_constraint : x[0] >= 0;
x[1] >= 0;
x[2] <= a[1];
outflow[1] == sum(x[i] for i in [0:T-1]);
#OBJECTIVES
// objective definitions

Note that the variables and the parameter are only accessed at indices that are consistent with their definitions.

GBOML provides two options to specify expansion ranges and define vectorized constraints, namely user-defined and
automatic expansions.

First, user-defined expansions can be constructed as follows:

<constraint> <expansion range>;

where <constraint> is an equality or inequality constraint and <expansion range> can be expressed using the for
and where keywords, according to the following syntax rules:

<expansion range>:= for <identifier> in [<start>:<end>];

:= for <identifier> in [<start>:<step>:<end>];

:= for <identifier> in [<start>:<end>] where <condition>;

:= for <identifier> in [<start>:<step>:<end>] where <condition>;

The first rule defines a constraint that is applied for all integral values of <identifier> that lie in the range between
<start> and <end> (both included). Note that <start> must be smaller than <end> for the range to be non-empty.
If an empty range is given, a warning will be raised. The <identifier> may be any identifier that has not been
used to define a parameter or a variable in the present node block. The t identifier is reserved for automatic expansion
(discussed below) and may not be used for user-defined expansions. The second rule makes use of the optional definition
of a <step> that is used to increment through the range between <start> and <end>. The third and fourth rules are
only extensions of the first two, where a certain condition needs to be satisfied for the constraint to be expanded.
Recall that such conditions are defined in terms of expressions, comparison operators, and logical operators. For a
condition to be valid, it must be possible to evaluate it for a given value of <identifier>. In particular, conditions
may depend on <identifier> and parameters but must not depend on variables. In addition, the indices over which
expansions take place must be valid for vectors of parameters and variables involved in vectorized constraints. More
precisely, an index is valid if it is non-negative and does not exceed the size of said vector. If an index that is not valid
is used in the expansion, an error is returned.

Second, automatic expansions can be declared by using the t identifier in a constraint. The constraint is then expanded
over all valid indices t ∈ {0, ..., 𝑇 − 1}.

For example, the following vectorized constraint

x[t] >= x[t-5];

will only be expanded over t ∈ {5, ..., T− 1} since the right-hand side expression is ill-defined for t < 5. A warning
is also raised to indicate the values of t over which the constraint cannot be expanded. Furthermore, a condition can

5.3. Nodes 17

Graph-Based Optimization Modeling Language

be added in automatic expansions. The corresponding syntax rule can be written as:

<constraint> <condition>;

where condition may depend on t and parameters.

The following is an example illustrating both expansion methods and making use of the keywords for and where in
order to compactly write selectively-imposed constraints:

#TIMEHORIZON
T = 20;

#NODE mynode
#PARAMETERS
a = import "data.csv"; // parameter vector with 20 entries
#VARIABLES
internal : x[T];
external : outflow[T];
#CONSTRAINTS
nonnegativity : x[t] >= 0;
x[i] <= a[i] for i in [1:(T-2)/2];
0 <= a[i]*x[i] for i in [2:2:10] where i != 4;
x[t] == 0 where t == 0 or t == T-1;
outflow[0] == x[0];
outflow[t] == outflow[t-1] + x[t];
#OBJECTIVES
// objective definitions

While the syntax discussed above is sufficiently expressive to define nonlinear equality and inequality constraints,
the GBOML parser expects constraints to be affine with respect to all variables involved. Hence, encoding nonlinear
constraints leads to an error being raised.

5.3.4 Objectives

Objective definitions are given by an expression and a keyword indicating whether the objective should be minimized
or maximized. The syntax rules for the definition of objectives are as follows:

min : <expression>;
max : <expression>;
min : <expression> <expansion range>;
max : <expression> <expansion range>;

At least one node in a given model must possess at least one objective but all nodes may have multiple objectives. In case
multiple objectives are given in the same #NODE block, all objectives are aggregated into a single one by summing them
(respecting the sign associated with the keywords min and max). Since the abstract GBOML problem is a minimization
problem, the signs of objectives that should be maximized are inverted before summation.

Objectives can also be expanded in two ways, namely via user-defined and automatic expansions. First, user-defined
expansions make use of an <identifier> that will be expanded over each value in the <expansion range>. Second,
automatic expansions can be constructed by using the t identifier directly in the objective. Since all local objectives
defined in the same #NODE block are eventually aggregated, the following objectives are in fact equivalent:

min : x[t], min : sum(x[i] for i in [0:T-1])

Similarly to constraints, identifiers can be assigned to objectives when defining them using the following syntax:

18 Chapter 5. Block Definitions

Graph-Based Optimization Modeling Language

min <identifier>: <expression>;
max <identifier>: <expression>;
min <identifier>: <expression> <expansion range>;
max <identifier>: <expression> <expansion range>;

The previous example can be completed by defining an objective function, which yields a complete and valid #NODE
block:

#TIMEHORIZON
T = 20;

#NODE mynode
#PARAMETERS
a = import "data.csv"; // parameter vector with 20 entries
#VARIABLES
internal : x[T];
external : outflow[T];
#CONSTRAINTS
x[t] >= 0;
x[i] <= a[i] for i in [1:T-2];
x[t] == 0 where t == 0 or t == T-1;
outflow[0] == x[0];
outflow[t] == outflow[t-1] + x[t];
#OBJECTIVES
max final_outflow: outflow[T-1];

As for constraint definitions, the syntax for objective definitions is sufficiently expressive to define nonlinear objectives.
However, the GBOML parser expects all objectives to be affine with respect to all variables.

5.4 Hyperedges

A hyperedge typically couples variables belonging to different nodes via equality or inequality constraints (or both).
Each hyperedge is defined using a dedicated code block. This code block must be started by either the #HYPEREDGE
keyword or the :#LINK keyword (the two can be used interchangeably). A hyperedge must have a unique <identifier>
and no two hyperedges or hyperedge and node may have the same identifier. In addition, a hyperedge may have its own
parameters and constraints. Hence, valid hyperedge blocks have the following structure:

#HYPEREDGE <identifier 1>
#PARAMETERS
// parameter definitions
#CONSTRAINTS
// constraint definitions

#LINK <identifier 2>
#PARAMETERS
// parameter definitions
#CONSTRAINTS
// constraint definitions

Parameters and constraints are further described below.

5.4. Hyperedges 19

Graph-Based Optimization Modeling Language

5.4.1 Parameters

Parameters defined in a #HYPEREDGE block follow the exact same rules as the ones defined in #NODE blocks.

5.4.2 Constraints

While affine constraints involving all variables declared in a #NODE block can be defined in the same block, constraints
defined in #HYPEREDGE blocks couple external variables associated with any subset of nodes. The syntax for defining
constraints is otherwise the same as the one used in #NODE blocks:

#CONSTRAINTS
<expression> == <expression> <expansion range>;
<expression> <= <expression> <expansion range>;
<expression> >= <expression> <expansion range>;

Similarly to the constraints defined in nodes, hyperedges can also be named by adding an identifier with colon defore
the constraint, as follows,

<constraint identifier>: <constraint>;

Given these syntax rules, the following is an example including valid hyperedge blocks (and associated #NODE blocks):

#TIMEHORIZON
// time horizon definition

#NODE node1
#VARIABLES
external : x;
external : inflow[T];
// further node content

#NODE node2
#VARIABLES
external : y;
external : outflow[T];
// further node content

#HYPEREDGE hyperedge1
#CONSTRAINTS
node1.inflow[t] == node2.outflow[t];

#NODE node3
#VARIABLES
external : z;
// further node content

#LINK hyperedge2
#PARAMETERS
weight = {1/3,2/3};
#CONSTRAINTS
node1.x <= weight[0]*node2.y + weight[1]*node3.z;
node2.y <= node3.z;

20 Chapter 5. Block Definitions

CHAPTER

SIX

ADVANCED FEATURES

Advanced features include hierarchical model definitions and imports.

These features are discussed in the following sections:

6.1 Hierarchical Models

In the hierarchical hypergraph abstraction underpinning the GBOML language, each node can itself be viewed as a
hierarchical hypergraph. Nodes may therefore be constructed in a bottom-up fashion, from sub-nodes linked by sub-
hyperedges.

Sub-nodes and sub-hyperedges are defined between the #PARAMETERS and #VARIABLES blocks of a parent node. Thus,
a typical hierarchical block #NODE is structured as follows:

#NODE <parent node identifier>
#PARAMETERS
// parent parameter definitions

#NODE <sub-node identifier 1>
#PARAMETERS
// sub-node 1 parameter definitions
#VARIABLES
// sub-node 1 variable definitions
#CONSTRAINTS
// sub-node 1 constraint definitions
#OBJECTIVES
// sub-node 1 objective definitions

#NODE <sub-node identifier 2>
#PARAMETERS
// sub-node 2 parameter definitions
#VARIABLES
// sub-node 2 variable definitions
#CONSTRAINTS
// sub-node 2 constraint definitions
#OBJECTIVES
// sub-node 2 objective definitions

#HYPEREDGE <sub-hyperedge identifier>
#PARAMETERS
// sub-hyperedge parameter definitions

(continues on next page)

21

Graph-Based Optimization Modeling Language

(continued from previous page)

#CONSTRAINTS
// sub-hyperedge constraint definitions

#VARIABLES
// parent variable definitions
#CONSTRAINTS
// parent constraint definitions
#OBJECTIVES
// parent objective definitions

Information can be exchanged between different levels in the hierarchy, notably through parameters and variables.
However, the direction in which information can be shared between levels depends on its nature, as discussed below.

Parameters can be only passed from the top down. Hence, parameters defined in a parent node can be accessed in any
child node or sub-hyperedge by prefixing the identifier of the parent node in any expression involving this parameter.
In other words, parent node parameters can be accessed in child nodes as follows:

<parent node identifier>.<parameter identifier>

Given these syntax rules, the following is a valid example of hierarchical parameter use (with three levels):

#NODE A
#PARAMETERS
parameter_A = 1;

#NODE B
#PARAMETERS
parameter_B = 2;

#NODE C
#PARAMETERS
parameter_C = 3;
sum_parameters = A.parameter_A + B.parameter_B + parameter_C; // = 6

Note that indenting node blocks corresponding to different levels in the hierarchy is not mandatory but makes for easier
reading.

In contrast to parameters, variables can only be passed from the bottom up. Thus, a parent node can define some of its
variables using those of a child node as follows:

<parent node identifier> <- <child node identifier>.<variable identifier>;

<parent node identifier> <- <child node identifier>.<variable identifier>[<expression>];

Note that parent variables defined in such fashion must have the same type as the underlying child variables and vector
variables must also have the same length. In addition, parent variables can only be defined from child variables one
level down in the hierarchy.

Given these syntax rules, the following is a valid example of hierarchical variable use:

22 Chapter 6. Advanced Features

Graph-Based Optimization Modeling Language

#NODE A

#NODE B
#VARIABLES
internal : x[10];

#NODE C
#VARIABLES
internal : x[10];

#VARIABLES
internal : y[10] <- B.x[10];
external : z[10] <- C.x[10];

These two examples can be combined to produce a valid hierarchical model example:

#TIMEHORIZON
T = 10;

#NODE A
#PARAMETERS
parameter_A = 1;

#NODE B
#PARAMETERS
parameter_B = 1+A.parameter_A;
#VARIABLES
internal : x[10];
#CONSTRAINTS
x[t] >= parameter_B;

#NODE C
#PARAMETERS
parameter_C = 2+A.parameter_A;
#VARIABLES
internal : x[10];
#CONSTRAINTS
x[t] >= parameter_C;

#VARIABLES
internal : y[10] <- B.x[10];
external : z[10] <- C.x[10];
#CONSTRAINTS
y[t]+z[t] >= 6;
#OBJECTIVES
min: y[t]+z[t];

6.1. Hierarchical Models 23

Graph-Based Optimization Modeling Language

6.2 Importing Nodes and Hyperedges

6.2.1 Importing Nodes

A node can be defined by importing an existing node from a GBOML input file. The imported node can be used as
such or some of its attributes may be re-defined (e.g., parameter values may be changed) based on the following syntax
rules:

#NODE <new node identifier> = import <imported node identifier> from <filename> ;
#NODE <new node identifier> = import <imported node identifier> from <filename> with <re-
→˓definitions>

If the imported node sits at the top of the node hierarchy in the GBOML input file, its identifier should be used as such
after the import keyword. However, if the imported node happens to be deeper in the hierarchy, a sequence of dot-
separated identifiers corresponding to its ancestors should be prefixed to its own identifier. For example, for a GBOML
file with a 2-level hierarchy, a child node could be imported by using the following identifier:

<parent node identifier>.<child node identifier>

When importing a node, two types of re-definitions are possible:

• Re-defining parameter values (i.e., changing the value of an existing parameter).

• Re-defining variable type (i.e., from external to internal or vice-versa).

To re-define the values of parameters originally defined in the imported node, their identifiers must be followed by
equality signs and new values:

#NODE <new node identifier> = import <imported node identifier> from <filename> with
→˓<parameter identifier> = <new parameter value>;

Note that the re-definition of a parameter may not change its type (i.e., vectors must remain vectors and likewise for
scalars). In addition, several parameters can be re-defined in such fashion, provided that each assignment is followed
by a semi-colon.

Variable type can be re-defined with the following rules:

<variable identifier> external;
<variable identifier> internal;

To illustrate these features, let file1.txt be a GBOML input file from which a node should be imported:

//file1.txt
#NODE Consumers
#PARAMETERS
total_number = 10;

#NODE consumer_1
#PARAMETERS
price_per_unit = 5;
avg_number_of_units = 100;
#VARIABLES
internal : delivery[T];

#VARIABLES
internal : consumer_1_delivery[T] <- consumer_1.delivery[T];

24 Chapter 6. Advanced Features

Graph-Based Optimization Modeling Language

Let consumer_1 be the identifier of the node that should be imported. This node can be imported in another file file2.txt
as follows:

//file2.txt
#NODE average_consumer = import Consumers.consumer_1 from "file1.txt" with
price_per_unit = 6;
delivery external;

This block defines the average_consumer node by importing the consumer_1 node from file1.txt. It re-defines its
price_per_unit parameter in the process and also changes the type of the delivery variable from internal to external.

6.2.2 Importing Hyperedges

Hyperedges may also be imported from a GBOML file using similar rules:

#HYPEREDGE <new hyperedge identifier> = import <identifiers> from <filename>
#HYPEREDGE <new hyperedge identifier> = import <identifiers> from <filename> with <re-
→˓definitions>

The first rule works just like the one described above for nodes. The second rule, however, differs in its possible re-
definitions. More precisely, parameter values may be re-defined but variable types may not, since hyperedges do not
have their own variables. However, the identifiers of nodes appearing in a hyperedge may be modified as follows:

<old node identifier> <- <new node identifier>;

This rule changes all occurrences of the old node identifier by the new identifier in the hyperedge.

To illustrate these features, let file3.txt be a GBOML input file from which a hyperedge should be imported:

//file3.txt
#NODE A
#VARIABLES
external : x[t];
#CONSTRAINTS
x[t]>= 2;
#OBJECTIVES
min: x[t];

#NODE B
#VARIABLES
external : x[t];
#CONSTRAINTS
x[t]>= 3;
#OBJECTIVES
min: x[t];

#HYPEREDGE H
#CONSTRAINTS
A.x[t] + B.x[t] >=6;

Let H be the identifier of the hyperedge that should be imported. Let us consider a second file named file4.txt in which
H should be re-named as H_1 and link two nodes named C and D. This file is given as follows:

6.2. Importing Nodes and Hyperedges 25

Graph-Based Optimization Modeling Language

//file4.txt
#NODE C
#VARIABLES
external : x[t];
#CONSTRAINTS
x[t]>= 5;
#OBJECTIVES
min: x[t];

#NODE D
#VARIABLES
external : x[t];
#CONSTRAINTS
x[t]>= 6;
#OBJECTIVES
min: x[t];

#HYPEREDGE H_1 = import H from "file1.txt" with
A <- C;
B <- D;

The last code block imports the hyperedge H and re-names all occurrences of node A by node C and node B by node D.
It is therefore equivalent to defining:

#HYPEREDGE H_1
#CONSTRAINTS
C.x[t] + D.x[t] >= 6;

26 Chapter 6. Advanced Features

CHAPTER

SEVEN

USEFUL IDIOMS

Several modeling needs may be readily addressed by using particular idioms that may not be immediately apparent from
the GBOML syntax rules. Such modeling needs are discussed and appropriate idioms to address them are discussed
next.

7.1 Repeating Data

In some cases, the modeling task calls for repeating data. For example, a model may cover a time horizon of multiple
days but the behavior of certain model components may be the same for each day. This case is illustrated in the following
example, along with the appropriate idiom for encoding the repeating model behavior.

#TIMEHORIZON
T = 5*24; // 5 days with hourly resolution
#NODE factory
#PARAMETERS
production = import "production.csv"; // 24 values for hourly production
#VARIABLES
external : outflow[T];
#CONSTRAINTS
outflow[t] == production[mod(t,24)];
#OBJECTIVES
// objective definitions

7.2 Round Down Integer Division

Integer division is not natively implemented in GBOML but can be a very useful tool for many modeling tasks. To
illustrate this, let us consider a model whose time horizon spans several days and some of whose components involve in-
dices that correspond to hours and days, respectively. An example of such problems is given below with the appropriate
idiom for encoding the different index behaviors.

#TIMEHORIZON
T = 365*24; // 365 days with hourly resolution

#GLOBAL
days = T/24;

#NODE bank
#PARAMETERS

(continues on next page)

27

Graph-Based Optimization Modeling Language

(continued from previous page)

interest_rate = import "interest_rate.csv"; // 365 values for daily interest rates
mean_interest = sum(interest_rate[i] for i in [0:global.days-1])/global.days; // mean␣
→˓interest rate
#VARIABLES
internal : investment_interest[T];
internal : investment[T];
#CONSTRAINTS
investment_interest[i] == interest_rate[(i-mod(i,24))/24]*investment[i] for i in [0:T-1];

28 Chapter 7. Useful Idioms

CHAPTER

EIGHT

HOW TO USE

Two interfaces to GBOML exist, namely a command-line interface and a Python API. They are described in the sections
listed below:

8.1 Command Line Interface

The GBOML parser can be called from the command line by typing the following commands in a terminal window:

gboml <file> <options>

where <file> is the name of the file to be considered and <options> corresponds to one or several optional flags that
can be activated.

The options are the following :

• Print tokens: the tokens output by the lexer can be printed with:

--lex

• Print the syntax tree: the syntax tree generated by the parser can be printed with:

--parser

• Print the matrices: the coefficient, right-hand side and objective matrices and vectors can be printed with:

--matrix

• Linprog: the linprog solver can be used with:

--linprog

The linprog solver for (continuous) linear programming comes with scipy and therefore does not require any installation
or license. It is much less powerful than other solver options and is therefore only recommended for testing purposes
(e.g., make sure that GBOML was properly installed).

• Gurobi: Gurobi can be invoked with:

--gurobi

• CPLEX: CPLEX can be used with:

--cplex

29

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

Graph-Based Optimization Modeling Language

• CPLEX Benders: CPLEX Benders can be used with:

--cplex_benders

• Xpress: Xpress can be used with:

--xpress

• Highs: Highs can be used with:

--highs

• Clp: Clp can be used with:

--clp

It interfaces with CLP and CBC via CyLP.

• Cbc: Cbc can be used with:

--cbc

It interfaces with CLP and CBC via a custom made experimental interface (it allows to set model parameters)

• DSP Dantzig-Wolfe: the DSP implementation (experimental) of the Dantzig-Wolfe algorithm can be invoked
with:

--dsp_dw

• DSP Extensive form: the DSP Extensive Form (i.e., flattened model) algorithm can be used with:

--dsp_de

• Solver option parameters: solver parameters can be set via a “.opt” file with:

--opt <opt_file>

where <opt_file> is the name of the file containing the solver parameters. If no parameters are provided, the default
solver parameters are used.

• Solver library path: solver library path for DSP, CBC and HiGHS can be set by with:

--solver_lib <path_to_library>

where <path_to_library> is the library path to read. If solver_lib is not set, the default solver on the library
PATH is used.

• CSV : the solution can be printed to a CSV file on a row basis (e.g., one variable per row):

--row_csv

• Transposed CSV : the solution can be printed to a CSV file on a column basis (e.g., one variable per column):

--col_csv

• JSON : the solution can be printed to a JSON file with:

30 Chapter 8. How to Use

Graph-Based Optimization Modeling Language

--json

• Detailed: the solution provided by the solver along with auxiliary information (e.g., dual variables, slacks or
basis ranges) can be printed to a JSON or CSV file with:

--detailed

• Multi-processing: the number of processes used for model generation can be controlled via:

--nb_processes <number>

where <number> is an integer, whose default value is 1.

• Output: the name of the output file can be defined with:

--output <output_filename>

where <output_filename> is the output filename without the extension (CSV or JSON). The default output name is
the name of the GBOML file with the date and chosen extension.

8.2 Python Interface

class gboml.GbomlGraph(timehorizon=1)
GbomlGraph makes it possible to define and solve a GBOML model.

The GbomlGraph class enables the construction of GBOML models by importing nodes and hyperedges from
a GBOML file. It also possesses a set of functions for updating the imported nodes and hyperedges (e.g., re-
defining parameters or the type of variables). Nodes and hyperedges can be added to a GbomlGraph instance,
from which the model can be solved and generated.

Parameters
timehorizon (int) – length of optimization horizon considered

Variables

• list_nodes – nodes included in model

• list_hyperedges – hyperedges included in model

• timehorizon – optimization horizon object

• node_hyperedge_dict – dictionary of all nodes and hyperedges

• program – Program class of generated model (= None if model not generated)

• matrix_a – constraint matrix A in sparse COO format (= None if model not generated)

• matrix_b – upper bound on each row in constraint matrix (i.e., right-hand side coefficients,
= None if model not generated)

• vector_c – vector of objective coefficients (= None if model not generated)

• indep_term_c – objective offset (i.e., constant term in the objective, = None if model not
generated)

add_global_parameter(identifier, value)
Add one global parameter objects to the graph

Parameters

8.2. Python Interface 31

Graph-Based Optimization Modeling Language

• identifier (str) – parameter name

• value (int|float|str) – value associated to the parameter (if string it expects a filename
to read from)

Returns:

add_global_parameters(global_parameters)
Add global parameters objects to the graph

Parameters
global_parameters (list) – list of Parameter object or tuples of <parameter_name, val-
ues> where values can be an int/float/list <int/float> or a string to import from.

Returns:

add_global_parameters_objects(global_parameters)
Add global parameters objects from list of parameters objects Warning this function will be removed in
future release ! Use add_global_parameters instead

Parameters
global_parameters (list) – list of global parameters

Returns:

add_hyperedges_in_model(*hyperedges)
bound method adding hyperedges to a GbomlGraph instance

Parameters
hyperedges (list <Hyperedge>) – list of hyperedge objects to be added

add_nodes_in_model(*nodes)
bound method adding nodes to a GbomlGraph instance

Parameters
nodes (list <Nodes>) – list of node objects to be added

static add_sub_hyperedge(hyperedge_to_add, in_node)
static method adding a sub-hyperedge to a given node

Parameters

• hyperedge_to_add (Hyperedge) – sub-hyperedge to add

• in_node (Node) – node to which sub-hyperedge should be added

static add_sub_node(node_to_add, in_node)
static method adding a child node to a given node

Parameters

• node_to_add (Node) – sub-node to add

• in_node (Node) – node to which sub-node should be added

build_model(nb_processes: int = 1)
bound method generating the matrices of the optimization model

Parameters
nb_processes (int) – number of processes used for model generation

32 Chapter 8. How to Use

Graph-Based Optimization Modeling Language

static change_node_name_in_hyperedge(hyperedge, old_node_name, new_node_name)
static method changing the name of a node appearing in the constraints of a given hyperedge

Parameters

• hyperedge (Hyperedge) – Hyperedge in which node names should be changed

• old_node_name (str) – previous node name

• new_node_name (str) – new node name

static change_type_variable_in_node(node, variable_name: str, variable_type)
static method changing the type of a variable

Parameters

• node (Node) – node to which variable that should be modified belongs

• variable_name (str) – variable name

• variable_type (VariableType) – new variable type (either External or Internal)

static create_parameter(parameter_name, value)
static method that returns a parameter whose name is given by parameter_name and expression by value

Parameters

• parameter_name (str) – parameter name

• value (float/int/list<int/float>) – value of parameter

Returns
param (Parameter) – parameter created

static get_object_in_node(in_node, *node_identifier: str, wanted_type=None)
static method returning a node or a hyperedge given an ancestor node

Parameters

• in_node (Node) – node to which the sub-node is expected to belong

• node_identifier (list <str>) – list of ancestor node names, with first name corre-
sponding to first sub-node and last name corresponding to node to retrieve

• wanted_type (Class Type) – either Node or Hyperedge depending on the type of the
object considered

Returns
retrieved_object (Node/Hyperedge) – retrieved node or hyperedge

get_timehorizon()

bound method returning the value of the time horizon

Returns
value (int) – length of time horizon considered

static import_all_nodes_and_edges(filename, cache=True)
static method importing all nodes and hyperedges contained in a file

Parameters

• filename (str) – path to GBOML input file

• cache (bool) – activate caching all the hypergraphs read during import by default set to
true

8.2. Python Interface 33

Graph-Based Optimization Modeling Language

Returns

• all_nodes (list) – list of nodes contained in file

• all_hyperedges (list) – list of hyperedges contained in file

• all_global_param (list) – list of global parameters in file

static import_hyperedge(filename: str, *imported_hyperedge_identifier: str, new_hyperedge_name: str
= '', copy=True, cache=True)

static method importing a hyperedge from a GBOML input file

Parameters

• filename (str) – path to GBOML input file

• imported_hyperedge_identifier (list <str>) – list of ancestor node names and
hyperedge name (used for depth- first traversal)

• new_hyperedge_name (str) – new hyperedge identifier (for re-naming purposes, op-
tional)

• copy (bool) – keyword argument defining whether a shallow or deep copy of the imported
node is created (defaults to True, which produces a deepcopy)

• cache (bool) – activate caching all the hypergraphs read during import by default set to
true

Returns
imported_hyperedge (Hyperedge) – imported hyperedge

static import_node(filename: str, *imported_node_identifier: str, new_node_name: str = '', copy=True,
cache=True)

static method importing a node from a GBOML input file

Parameters

• filename (str) – path to GBOML input file

• imported_node_identifier (list <str>) – list of ancestor node names and node
name (used for depth-first traversal)

• new_node_name (str) – new identifier of node (for re-naming purposes, optional)

• copy (bool) – keyword argument defining whether a shallow or deep copy of the imported
node is created (defaults to True, which produces a deepcopy)

• cache (bool) – activate caching all the hypergraphs read during import by default set to
true

Returns
imported_node (Node) – imported node

static modify_parameter_value(parameter, value)
Modify the value of parameter

Parameters

• parameter (Parameter) – parameter to modify

• value (int|float|list<float/int>) – value associated to the parameter

Returns:

34 Chapter 8. How to Use

Graph-Based Optimization Modeling Language

static redefine_parameters_from_keywords(node_or_hyperedge, **kwargs)
static method re-defining parameter values from keyword arguments

Parameters

• node_or_hyperedge (Node/Hyperedge) – Node/Hyperedge in which parameters should
be re-defined

• kwargs (tuple <str, value>) – tuple of parameters name, value

static redefine_parameters_from_list(node_or_hyperedge, list_parameters: list, list_values: list)
static method re-defining parameter values from a list

Parameters

• node_or_hyperedge (Node/Hyperedge) – Node/Hyperedge in which parameters should
be re-defined

• list_parameters (list <str>) – list of parameter names

• list_values (list <float> | list <float> | <str>) – list of parameter values

static remove_constraint(node_or_hyperedge, *to_delete_constraints_names)
static method removing constraints from a node/hyperedge

Parameters

• node_or_hyperedge (Node/Hyperedge) – Node/Hyperedge from which constraints
should be removed

• to_delete_constraints_names (list <str>) – names of constraints to remove

static remove_objective_in_node(node, *to_delete_objectives_names)
static method removing objectives from a node

Parameters

• node (Node/Hyperedge) – node from which objectives should be removed

• to_delete_objectives_names (list <str>) – names of objectives to remove

static rename(node_or_hyperedge, new_name)
static method re-naming a node or hyperedge

Parameters

• node_or_hyperedge (Node/Hyperedge) – node or hyperedge to be re-named

• new_name (str) – new name

static set_parsing_cache_limit(size)
sets a limit to the global cache.

Parameters
size – The cache size

set_timehorizon(value)
bound method setting the time horizon to a specified value

Parameters
value (int) – length of time horizon considered

8.2. Python Interface 35

Graph-Based Optimization Modeling Language

solve_cbc(opt_file=None, opt_dict=None)
bound method solving the flattened optimization problem with Cbc

Parameters

• opt_file (str) – filename of file containing the optimization parameters

• opt_dict (dict) – dictionary containing the optimization parameters the key must be the
parameter to tune the value a tuple of the <type, value> example: {“gap”: [“double”, 0.5]

Returns

• solution (ndarray) – flattened solution

• objective (flat) – float of the objective value

• status (str) – solver exit status

• solver_info (dict) – dictionary storing solver information

solve_clp()

bound method solving the flattened optimization problem with Clp

Returns

• solution (ndarray) – flattened solution

• objective (flat) – float of the objective value

• status (str) – solver exit status

• solver_info (dict) – dictionary storing solver information

solve_cplex(opt_file: str = None, details=False, opt_dict=None)
bound method solving the flattened optimization model with CPLEX

Parameters

• opt_file (str) – path to an optimization parameters file

• details (bool) – get variables and constraints information

• opt_dict (dict) – dictionary containing the optimization parameters

Returns

• solution (ndarray) – flattened solution

• objective (float) – objective value

• status (str) – solver exit status

• solver_info (dict) – dictionary storing solver information

• constraints_information (dict) – dict of additional information concerning constraints

• variables_information (dict) – dict of additional information concerning variables

solve_dsp(algorithm='dw')
bound method solving the optimization model with DSP

Parameters
algorithm (str) – algorithm selected (“dw” for Dantzig-Wolfe and “de” for extensive form
solve)

Returns

• solution (ndarray) – flattened solution

36 Chapter 8. How to Use

Graph-Based Optimization Modeling Language

• objective (float) – objective value

• status (str) – solver exit status

• solver_info (dict) – dictionary of solver information

solve_gurobi(opt_file: str = None, details=False)
bound method solving the flattened optimization model with Gurobi

Parameters

• opt_file (str) – path to an optimization parameters file

• details (bool) – get variables and constraints information

Returns

• solution (ndarray) – flattened solution

• objective (float) – objective value

• status (str) – solver exit status

• solver_info (dict) – dictionary storing solver information

• constraints_information (dict) – dict of additional information concerning constraints

• variables_information (dict) – dict of additional information concerning variables

solve_highs()

bound method solving the flattened optimization problem with Highs

Returns

• solution (ndarray) – flattened solution

• objective (flat) – float of the objective value

• status (str) – solver exit status

• solver_info (dict) – dictionary storing solver information

solve_xpress(opt_file: str = None, details=False)
bound method solving the flattened optimization model with Xpress

Parameters

• opt_file (str) – path to an optimization parameters file

• details (bool) – get variables and constraints information

Returns

• solution (ndarray) – flattened solution

• objective (float) – objective value

• status (str) – solver exit status

• solver_info (dict) – dictionary storing solver information

• constraints_information (dict) – dict of additional information concerning constraints

• variables_information (dict) – dict of additional information concerning variables

8.2. Python Interface 37

Graph-Based Optimization Modeling Language

turn_solution_to_dictionary(solver_data, status, solution, objective, constraint_info=None,
variables_info=None)

bound method converting the flat solution to a structured dictionary

Parameters

• solver_data (dict) – dictionary of solver information

• status (str) – solver exit status

• solution (ndarray) – flattened solution

• objective (float) – objective value

• constraint_info (dict) – dict of additional information concerning constraints

• variables_info (dict) – dict of additional information concerning variables

Returns
gathered_data (dict) – structured dictionary containing all the solution information

turn_solution_to_list(solution, constraints_info=None)
bound method converting the flat solution to a list of <name, value> tuples

Parameters

• solution (ndarray) – flattened solution

• constraints_info (dict) – dict of additional information concerning constraints

Returns
output_list (list) – list of <name, value> tuples

8.3 Solver APIs

The GBOML parser interfaces with a variety of open source and commercial solvers in order to solve optimization
models. Direct access to their API is provided for several solvers, allowing users to tune algorithm parameters and
query complementary information (e.g., dual variables, slacks or basis ranges, when available).

Solver parameters must be placed in file named solver_name.opt. This file must be passed via the –opt option of the
command-line interface or directly as an argument in the Python API. More information about solver parameters can
typically be found on the website of the respective solver (e.g., for Gurobi).

The list of attributes that may be queried from the different solvers can be found below:

• Gurobi: the following constraint attributes can be queried from the solver: Pi (dual variables), Slack (slack
variables), CBasis (whether slack variable is in simplex basis), SARHSLow (right-hand side basis sensitivity
information), SARHSUp (right-hand side basis sensitivity information). In addition, the following variable at-
tributes can be queried (most of them useful for sensitivity analyses): RC (reduced cost), VBasis, SAObjLow,
SAObjUp, SALBLow, SALBUp, SAUBLow, SAUBUp. More details can be found on the Gurobi website.

• CPLEX: the following constraint attributes can be queried: dual and slack variables. The following variable
attributes can be queried: basis information and dual norms.

• Xpress: the following constraint attributes can be queried: dual and slack variables. The following variable
attributes can be queried: reduced cost.

• Cbc/Clp: the Cbc/Clp API is still under development with a new interface where multiple parameters can be
passed to the solver but no variable attributes can be queried yet.

• Highs: the Highs API is still under development with a new interface where multiple parameters can be passed
to the solver but no variable attributes can be queried yet.

38 Chapter 8. How to Use

https://www.gurobi.com/documentation/9.1/refman/parameters.html
https://www.gurobi.com/documentation/9.1/refman/attributes.html

Graph-Based Optimization Modeling Language

Note that all of these attributes are automatically queried and printed in the detailed JSON/CSV file, when requested.

8.3. Solver APIs 39

Graph-Based Optimization Modeling Language

40 Chapter 8. How to Use

CHAPTER

NINE

EXAMPLES

This section is divided in two parts. The first part is dedicated to three examples. The first example deals with a micro-
grid system design problem and illustrates the basic features of GBOML. The second example is more sophisticated
and focuses on a remote carbon-neutral fuel supply chain planning problem. Finally, the third example is based on a
hypothetical problem and illustrates the Python API. The second part provides a list of reference papers and models
that use GBOML.

9.1 Microgrid Example

9.1.1 Problem Description

A grid-connected microgrid is a small-scale and (ideally) self-sufficient electric power system. It consists of an inter-
connection of electric generators (e.g., solar panels or fossil fuel generators) and loads (the set of electricity consumers).
An electrical storage system is often added to the system in order to balance electricity production and consumption in
time while limiting the dependence on the distribution network. The configuration of the microgrid system is shown
in Fig. 9.1.

In this section, we study the problem of sizing an electric microgrid similar to the one shown in Fig. 9.1. The aim of the
sizing problem is to determine the amount of solar panel and battery storage capacity required to minimize the cost of
serving pre-specified electricity demand levels over the lifetime of the system. Hence, both investment and operating
costs are taken into account. In addition, the electricity consumed in the microgrid and the solar irradiation of the
panels are assumed known for a typical representative day.

9.1.2 GBOML Implementation

The system is composed of four nodes implementing the behavior of the elements of the microgrid. The first node
corresponds to solar panels. The second node represents the dynamics and costs of a battery based on the power
flows that charge and discharge it. The third node models the consumer load. The last node represents the electricity
distribution network. The power balance of the system is represented via a hyperedge. A skeleton of the optimization
problem expressed in the language is provided below. First, the horizon 𝑇 is defined as the number of hours over the
lifetime of the system, which is assumed to be twenty years. Then, the four nodes are implemented. Finally, these
nodes are linked via a hyperedge.

#TIMEHORIZON
T = 20 * 365 * 24; // number of hours in twenty years

#NODE SOLAR_PV
// Implementation of solar panel node

(continues on next page)

41

Graph-Based Optimization Modeling Language

Fig. 9.1: Microgrid system configuration.

42 Chapter 9. Examples

Graph-Based Optimization Modeling Language

(continued from previous page)

#NODE BATTERY
// Implementation of battery node

#NODE DEMAND
// Implementation of demand node

#NODE DISTRIBUTION
// Implementation of distribution network node

#HYPEREDGE POWER_BALANCE
// Implementation of power balance hyperedge

Let us now discuss the implementation of the four nodes one by one. In what follows, Latin letters denote optimization
variables, while Greek letters are used for parameters.

A solar panel is a technology that harnesses solar radiation for electricity production. The installed capacity of solars
panels 𝑃𝑃𝑉 ∈ R+ (in watt) determines the maximum amount of power that they may produce at any point in time.
The investment cost 𝐼𝑃𝑉 ∈ R+ (in some currency) can be calculated as the product of the installed capacity and the
capital expenditure (CAPEX) 𝜄𝑃𝑉 ∈ R+ associated with the deployment of one unit of capacity (in currency/watt):

𝐼𝑃𝑉 = 𝜄𝑃𝑉 · 𝑃𝑃𝑉 .

At time 𝑡, the maximum power that may be generated by the solar panels is equal to the product of the installed capacity
𝑃𝑃𝑉 and a dimensionless capacity factor parameter 𝜋𝑃𝑉

𝑡 ∈ [0, 1], which is computed based on the irradiance at time 𝑡
and the PV technology at hand. In addition, the power can be curtailed so that the actual power production 𝑝𝑃𝑉

𝑡 ∈ R+

(in watt) can be smaller than the maximum power that may be generated by the panels. The latter is captured by the
following inequality constraint involving the power injected into the microgrid and the maximal power generated by
the solar panels, the constraint being tight when no curtailment occurs:

𝑝𝑃𝑉
𝑡 ≤ 𝜋𝑃𝑉

𝑡 · 𝑃𝑃𝑉 , 𝑡 = 0, . . . , 𝑇 − 1.

The node describing the solar panels is implemented below. This node has two scalar internal variables: one for
the capacity 𝑃𝑃𝑉 and one for the investment cost 𝐼𝑃𝑉 . A time-dependent external variable implements the power
generated by the panels 𝑝𝑃𝑉

𝑡 . Constraints are used to define the investment cost and the power output of the solar
panels and enforce the nonnegativity of optimization variables. Finally, the objective to be minimized is the investment
cost 𝐼𝑃𝑉 .

#NODE SOLAR_PV
#PARAMETERS
capex = 600; // capital expenditure per unit capacity
capacity_factor = import "pv_gen.csv";
#VARIABLES
internal: capacity;
internal: investment_cost;
external: electricity[T];
#CONSTRAINTS
capacity >= 0;
electricity[t] >= 0;
electricity[t] <= capacity_factor[mod(t, 24)] * capacity;
investment_cost == capex * capacity;
#OBJECTIVES
min: investment_cost;

A battery is an electrical device that can store energy. The installed capacity �̄�𝐵 ∈ R+ (in watt-hour) defines the
maximum amount of energy that may be stored in the battery. Similarly to the solar panels, a capital expenditure 𝜄𝐵 (in

9.1. Microgrid Example 43

Graph-Based Optimization Modeling Language

currency/watt-hour) is associated with the deployment of one unit of battery storage capacity, such that the investment
cost 𝐼𝑃𝑉 ∈ R+ is computed as follows:

𝐼𝐵 = 𝜄𝐵 · �̄�𝐵 .

Energy can be charged or discharged from the battery by letting power flow in or out of the battery. The charging
power and discharging power are denoted by 𝑝𝐵+

𝑡 ∈ R+ (in watt) and 𝑝𝐵−
𝑡 ∈ R+ (in watt), respectively. The energy

stored in the battery 𝑒𝐵𝑡 ∈ R+ (in watt-hour), which is sometimes referred to as the state of charge of the battery, is
upper-bounded by the installed capacity:

𝑒𝐵𝑡 ≤ �̄�𝐵 , 𝑡 = 0, . . . , 𝑇 − 1.

In addition, the state of charge is linked to the power flowing in and out of the battery through the following constraint:

𝑒𝐵𝑡+1 = 𝑒𝐵𝑡 + 𝜂 · 𝑝𝐵+
𝑡 − 𝑝𝐵−

𝑡

𝜂
, 𝑡 = 0, . . . , 𝑇 − 2,

where 𝜂 ∈ [0, 1] is the efficiency of the battery, which is a parameter quantifying the energy lost when charging and
discharging the battery. Finally, it is common to impose that the energy stored in the battery at the beginning of the
time horizon is equal to the energy stored in the battery at the end of it, in order to avoid spurious transient effects in
storage operation close to the beginning and the end of the time horizon:

𝑒𝐵0 = 𝑒𝐵𝑇−1.

In addition to two scalar internal variables representing the installed capacity �̄�𝐵 and the investment cost 𝐼𝐵 , a time-
dependent internal variable is used for the energy stored in the battery 𝑒𝐵𝑡 . Furthermore, the charge 𝑝𝐵+

𝑡 and discharge
𝑝𝐵−
𝑡 power flows are defined as time-dependent external variables of the battery node. Finally, the investment cost 𝐼𝐵

is minimized. The implementation is provided below.

#NODE BATTERY
#PARAMETERS
capex = 150; // capital expenditure per unit capacity
efficiency = 0.75;
#VARIABLES
internal: capacity;
internal: investment_cost;
internal: energy[T];
external: charge[T];
external: discharge[T];
#CONSTRAINTS
capacity >= 0;
energy[t] >= 0;
charge[t] >= 0;
discharge[t] >= 0;
energy[t] <= capacity;
energy[t+1] == energy[t] + efficiency * charge[t] - discharge[t] / efficiency;
energy[0] == energy[T-1];
investment_cost == capex * capacity;
#OBJECTIVES
min: investment_cost;

In the demand node shown below, the electrical consumption 𝑝𝐶𝑡 ∈ R+ (in watt) is computed for each time 𝑡 based on
a time series provided as a parameter and giving the typical consumption for the 24 hours of a representative day. No
objective is required.

44 Chapter 9. Examples

Graph-Based Optimization Modeling Language

#NODE DEMAND
#PARAMETERS
demand = import "demand.csv";
#VARIABLES
external: consumption[T];
#CONSTRAINTS
consumption[t] == demand[mod(t, 24)];

The distribution node represents the distribution network to which the microgrid is connected. It is possible to buy
power 𝑝𝐷𝑡 ∈ R+ (in watt) from the grid to make up for any power shortage that may occur in the microgrid at time 𝑡.
This power is bought at a marginal price 𝜃𝐷 (in currency/watt) such that the operating cost 𝑜𝐷𝑡 ∈ R+ at time 𝑡 is given
by:

𝑜𝐷𝑡 = 𝜃𝐷 · 𝑝𝐷𝑡 , 𝑡 = 0, . . . , 𝑇 − 1.

In this node, the total operating cost 𝑂𝐷 ∈ R+ over the lifetime of the system is minimized, and the objective function
is thus the following:

𝑂𝐷 =

𝑇−1∑︁
𝑡=0

𝑜𝐷𝑡 .

This node is implemented below. The imported power 𝑝𝐷𝑡 is modeled by a time-dependent external variable. More-
over, the operating cost 𝑜𝐷𝑡 is computed using a time-dependent internal variable and the total operating cost 𝑂𝐷 is
minimized.

#NODE DISTRIBUTION
#PARAMETERS
electricity_price = 0.05;
#VARIABLES
internal: operating_cost[T];
external: power_import[T];
#CONSTRAINTS
power_import[t] >= 0;
operating_cost[t] == electricity_price * power_import[t];
#OBJECTIVES
min: operating_cost[t];

All nodes are connected via a hyperedge implementing an equality constraint that represents the balance between
electricity production and consumption in the microgrid. Hence, the sum of the solar production 𝑝𝑃𝑉

𝑡 , the power
discharged from the battery 𝑝𝐵−

𝑡 and the power bought from the distribution network 𝑝𝐷𝑡 must be equal to the sum
of the power charged in the battery 𝑝𝐵+

𝑡 and the power consumed 𝑝𝐶𝑡 by loads and appliances. In other words, the
following constraint enforces the power balance in the microgrid:

𝑝𝑃𝑉
𝑡 + 𝑝𝐵−

𝑡 + 𝑝𝐷𝑡 = 𝑝𝐵+
𝑡 + 𝑝𝐶𝑡 , 𝑡 = 0, . . . , 𝑇 − 1.

This hyperedge can be implemented as follows:

#HYPEREDGE POWER_BALANCE
#CONSTRAINTS
SOLAR_PV.electricity[t] + BATTERY.discharge[t] + DISTRIBUTION.power_import[t] == BATTERY.
→˓charge[t] + DEMAND.consumption[t];

Finally, the complete model is obtained by substituting the code blocks of all nodes in the skeleton code introduced
earlier. The model is then translated using the GBOML compiler and solved with Gurobi. For the optimal configuration,

9.1. Microgrid Example 45

Graph-Based Optimization Modeling Language

the objective function is such that:

min 𝜄𝑃𝑉 · 𝑃𝑃𝑉⏟ ⏞
Investment PV

+ 𝜄𝐵 · �̄�𝐵⏟ ⏞
Investment battery

+

𝑇−1∑︁
𝑡=0

𝜃𝐷 · 𝑝𝐷𝑡⏟ ⏞
Power Imports

≈ 5.6× 104.

9.1.3 Running the Example

There are two ways of running the microgrid example:

• From the command line: first, you need to go to the GBOML directory, open a terminal window and type the
following commands,

gboml examples/microgrid/microgrid.txt --cplex --json --output microgrid_example

This will solve the microgrid problem using CPLEX and save the solution in “exam-
ples/microgrid/microgrid_example.json”.

• From Python: execute the following Python code,

from gboml import GbomlGraph

gboml_model = GbomlGraph(24*365)
nodes, edges, _ = gboml_model.import_all_nodes_and_edges("path_to_GBOML_directory/
→˓examples/microgrid/microgrid.txt")
gboml_model.add_nodes_in_model(*nodes)
gboml_model.add_hyperedges_in_model(*edges)
gboml_model.build_model()
solution = gboml_model.solve_cplex()
print(solution)

The solution of this example is printed in the terminal.

9.2 Remote Hub Example

9.2.1 Problem Description

The production of carbon-neutral synthetic fuels in remote areas where high-quality renewable resources are abundant
has long been viewed as a means of developing a cost-effective, decarbonised energy supply for countries with limited
local renewable potential (see for instance Hashimoto et al.). The synthesis of carbon-neutral fuels relies on a set of
tightly-integrated technologies implementing various chemical processes. In order to properly estimate the cost of the
final product, the entire supply chain must be modelled in an integrated fashion, from remote electricity production to
product delivery at the destination.

From a modeling perspective, remote carbon-neutral fuel supply chains can be naturally represented as hypergraphs
where each node models a technology or process and has a low degree (i.e., each technology only interacts with a small
subset of all technologies and processes), as depicted below for the particular case of synthetic methane. Moreover,
for the purpose of strategic techno-economic analyses, each process can be described using one of only two simple
generic nodes, namely conversion and storage nodes. Roughly speaking, conversion nodes represent technologies im-
plementing physical processes that enable the transformation of commodities, while storage nodes model technologies
that can hold commodities over time and restore them when needed. On the other hand, the relationship between nodes

46 Chapter 9. Examples

https://www.sciencedirect.com/science/article/pii/S0921509399000921?via%3Dihub

Graph-Based Optimization Modeling Language

Fig. 9.2: Remote hub system configuration.

9.2. Remote Hub Example 47

Graph-Based Optimization Modeling Language

is expressed via so-called conservation hyperedges that enforce the conservation of flows of commodities between con-
version and storage nodes. These nodes and hyperedges are simple to encode in GBOML, which therefore provides a
convenient way of building integrated carbon-neutral fuel supply chain models.

The modeling framework was leveraged in a recent paper to study the economics of producing carbon-neutral synthetic
methane from solar and wind energy in North Africa and exporting it to Northwestern Europe. The supply chain
schematically represented in Fig. 9.2 was modelled in an integrated fashion, and each technology in the supply chain
was sized based on an operational horizon of five years with hourly resolution in order to minimize total system cost.
The full supply chain model is described in detail in the paper, along with the data required to instantiate it. Results
suggest that total system costs would be around 1.5 BEUR/year (over the lifetime of the system) by 2030 for systems
producing 10 TWh (higher heating value) of synthetic methane annually using a combination of solar and wind power
plants (assuming a weighted average cost of capital of 7%), respectively, resulting in carbon-neutral synthetic methane
costs around 150 EUR/MWh. A comprehensive sensitivity analysis is also carried out in order to assess the impact
of various techno-economic parameters and assumptions on synthetic methane cost, including the availability of wind
power plants, the investment costs of electrolysis, methanation and direct air capture plants, their operational flexibility,
the energy consumption of direct air capture plants, and financing costs. The most expensive configuration (around 200
EUR/MWh) relies on solar photovoltaic power plants alone, while the cheapest configuration (around 88 EUR/MWh)
makes use of a combination of solar PV and wind power plants and is obtained when financing costs are set to zero. The
input files encoding the model in GBOML and enabling the replication of these results are available in the GBOML
repository.

9.2.2 Running the Example

There are two ways of running the remote hub example:

• From the command line: first, you need to go to the GBOML directory, open a terminal and write the following,

gboml examples/remote_energy_supply_chain/remote_hub_nowacc.txt --cplex --json --output␣
→˓remote_hub_example

This will solve the remote hub problem using CPLEX and save the solution in “exam-
ples/remote_energy_supply_chain/remote_hub_example.json”.

• From Python: execute the following Python code,

from gboml import GbomlGraph

gboml_model = GbomlGraph(24*365)
nodes, edges, _ = gboml_model.import_all_nodes_and_edges("path_to_GBOML_directory/
→˓examples/remote_energy_supply_chain/remote_hub_nowacc.txt")
gboml_model.add_nodes_in_model(*nodes)
gboml_model.add_hyperedges_in_model(*edges)
gboml_model.build_model()
solution = gboml_model.solve_cplex()
print(solution)

The solution of this example is printed in the terminal.

48 Chapter 9. Examples

https://www.frontiersin.org/articles/10.3389/fenrg.2021.671279/full
https://gitlab.uliege.be/smart_grids/public/gboml
https://gitlab.uliege.be/smart_grids/public/gboml

Graph-Based Optimization Modeling Language

9.3 Python API Example

The following example illustrates various functions defined in the Python API and its GbomlGraph class.

First, the GbomlGraph class can be imported from the gboml package as follows:

from gboml import GbomlGraph

Second, an instance of the GbomlGraph class with a time horizon of 3 can be created:

timehorizon = 3
gboml_model = GbomlGraph(timehorizon)

Third, all the nodes defined in the microgrid example can be imported:

nodes, edges, global_param = gboml_model.import_all_nodes_and_edges("examples/microgrid/
→˓microgrid.txt")

Then, the nodes and hyperedges may be re-named by adding “new_” to the original names of all nodes and hyperedges,

old_names = []
for node in nodes:

old_names.append(node.get_name())
gboml_model.rename(node, "new_"+node.get_name())

for hyperedge in edges:
gboml_model.rename(hyperedge, "new_"+hyperedge.get_name())
for i, node in enumerate(nodes):

gboml_model.change_node_name_in_hyperedge(hyperedge, old_names[i], node.get_name())

Let us assume that a node named N exists in a GBOML file called test6.txt. In addition, let us assume that a variable
x[T], a parameter b=4, a constraint x[t]>= b and an objective min : x[t] are defined in this node. Then, this
node can be imported into a new node and the full microgrid problem can be encapsulated inside of it in order to create
a hierarchy:

parent = gboml_model.import_node("test/test6.txt", "N")
for node in nodes:

gboml_model.add_sub_node(node, parent)

for edge in edges:
gboml_model.add_sub_hyperedge(edge, parent)

Note that at this stage, the parent node has not yet been added to the model and is currently a stand-alone imported
Node object with sub-nodes and sub-hyperedges.

The value of the parent node parameter b can be updated as follows:

gboml_model.redefine_parameters_from_keywords(parent, b=6)

Finally, the parent node can be added to the model. The latter can then be generated and solved with CPLEX:

gboml_model.add_nodes_in_model(parent)
gboml_model.build_model()
solution = gboml_model.solve_cplex()

To recap, the full code reads:

9.3. Python API Example 49

Graph-Based Optimization Modeling Language

from gboml import GbomlGraph

timehorizon = 3
gboml_model = GbomlGraph(timehorizon)
nodes, edges, global_param = gboml_model.import_all_nodes_and_edges("examples/microgrid/
→˓microgrid.txt")
old_names = []
for node in nodes:

old_names.append(node.get_name())
gboml_model.rename(node, "new_"+node.get_name())

for hyperedge in edges:
gboml_model.rename(hyperedge, "new_"+hyperedge.get_name())
for i, node in enumerate(nodes):

gboml_model.change_node_name_in_hyperedge(hyperedge, old_names[i], node.get_name())

parent = gboml_model.import_node("test/test6.txt", "H")
for node in nodes:

gboml_model.add_sub_node(node, parent)

for edge in edges:
gboml_model.add_sub_hyperedge(edge, parent)

gboml_model.redefine_parameters_from_keywords(parent, b=6)
gboml_model.add_nodes_in_model(parent)
gboml_model.build_model()
solution = gboml_model.solve_cplex()

9.4 Models and papers that use GBOML

• Berger et al. 2021, Remote Renewable Hubs for Carbon-Neutral Synthetic Fuel Production, https://www.
frontiersin.org/articles/10.3389/fenrg.2021.671279/full. The model can be found at : https://gitlab.uliege.be/
smart_grids/public/gboml/-/tree/master/examples/remote_energy_supply_chain.

• Cauz et al. 2023, Reinforcement Learning for Joint Design and Control of Battery-PV Systems, https://arxiv.
org/pdf/2307.04244.pdf.

• Dachet et al. 2023, Towards CO2 valorization in a multi remote renewable energy hub framework, https://arxiv.
org/pdf/2303.09454.pdf. The model can be found at : https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/
master/examples/towards_co2_valorization.

• Fonder et al. 2023, Synthetic methane for closing the carbon loop: Comparative study of three car-
bon sources for remote carbon-neutral fuel synthetization, https://arxiv.org/pdf/2310.01964.pdf. The model
can be found at : https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/master/examples/synthetic_methane_
morocco/gboml_models.

If you have a model that you would like to add to the list. Please contact us on gitlab: https://gitlab.uliege.be/smart_
grids/public/gboml.

50 Chapter 9. Examples

https://www.frontiersin.org/articles/10.3389/fenrg.2021.671279/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.671279/full
https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/master/examples/remote_energy_supply_chain
https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/master/examples/remote_energy_supply_chain
https://arxiv.org/pdf/2307.04244.pdf
https://arxiv.org/pdf/2307.04244.pdf
https://arxiv.org/pdf/2303.09454.pdf
https://arxiv.org/pdf/2303.09454.pdf
https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/master/examples/towards_co2_valorization
https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/master/examples/towards_co2_valorization
https://arxiv.org/pdf/2310.01964.pdf
https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/master/examples/synthetic_methane_morocco/gboml_models
https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/master/examples/synthetic_methane_morocco/gboml_models
https://gitlab.uliege.be/smart_grids/public/gboml
https://gitlab.uliege.be/smart_grids/public/gboml

CHAPTER

TEN

CITING GBOML

An early version of the GBOML framework was introduced in a paper: https://www.frontiersin.org/articles/10.3389/
fenrg.2021.671279/full. GBOML software has been published in the Journal of Open-Source Software : https:
//joss.theoj.org/papers/10.21105/joss.04158. The inner workings of GBOML and a benchmark have been discussed
in a recent paper published in Optimization Methods and Software : https://www.tandfonline.com/doi/full/10.1080/
10556788.2023.2246169.

To cite the software :

@article{Miftari2023,
author = {Bardhyl Miftari, Mathias Berger, Guillaume Derval, Quentin Louveaux and␣

→˓Damien Ernst},
title = {GBOML: a structure-exploiting optimization modelling language in Python},
journal = {Optimization Methods and Software},
volume = {0},
number = {0},
pages = {1-30},
year = {2023},
publisher = {Taylor & Francis},
doi = {10.1080/10556788.2023.2246169},
URL = {https://doi.org/10.1080/10556788.2023.2246169},
eprint = {https://doi.org/10.1080/10556788.2023.2246169}

}

@article{Miftari2022,
doi = {10.21105/joss.04158},
url = {https://doi.org/10.21105/joss.04158},
year = {2022},
publisher = {The Open Journal},
volume = {7},
number = {72},
pages = {4158},
author = {Bardhyl Miftari and Mathias Berger and Hatim Djelassi and Damien Ernst},
title = {GBOML: Graph-Based Optimization Modeling Language},
journal = {Journal of Open Source Software}

}

A PDF version of this documentation can be found here.

51

https://www.frontiersin.org/articles/10.3389/fenrg.2021.671279/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.671279/full
https://joss.theoj.org/papers/10.21105/joss.04158
https://joss.theoj.org/papers/10.21105/joss.04158
https://www.tandfonline.com/doi/full/10.1080/10556788.2023.2246169
https://www.tandfonline.com/doi/full/10.1080/10556788.2023.2246169
https://gboml.readthedocs.io/_/downloads/en/latest/pdf/

Graph-Based Optimization Modeling Language

52 Chapter 10. Citing GBOML

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

53

Graph-Based Optimization Modeling Language

54 Chapter 11. Indices and tables

INDEX

A
add_global_parameter() (gboml.GbomlGraph

method), 31
add_global_parameters() (gboml.GbomlGraph

method), 32
add_global_parameters_objects()

(gboml.GbomlGraph method), 32
add_hyperedges_in_model() (gboml.GbomlGraph

method), 32
add_nodes_in_model() (gboml.GbomlGraph method),

32
add_sub_hyperedge() (gboml.GbomlGraph static

method), 32
add_sub_node() (gboml.GbomlGraph static method),

32

B
build_model() (gboml.GbomlGraph method), 32

C
change_node_name_in_hyperedge()

(gboml.GbomlGraph static method), 32
change_type_variable_in_node()

(gboml.GbomlGraph static method), 33
create_parameter() (gboml.GbomlGraph static

method), 33

G
GbomlGraph (class in gboml), 31
get_object_in_node() (gboml.GbomlGraph static

method), 33
get_timehorizon() (gboml.GbomlGraph method), 33

I
import_all_nodes_and_edges()

(gboml.GbomlGraph static method), 33
import_hyperedge() (gboml.GbomlGraph static

method), 34
import_node() (gboml.GbomlGraph static method), 34

M
modify_parameter_value() (gboml.GbomlGraph

static method), 34

R
redefine_parameters_from_keywords()

(gboml.GbomlGraph static method), 34
redefine_parameters_from_list()

(gboml.GbomlGraph static method), 35
remove_constraint() (gboml.GbomlGraph static

method), 35
remove_objective_in_node() (gboml.GbomlGraph

static method), 35
rename() (gboml.GbomlGraph static method), 35

S
set_parsing_cache_limit() (gboml.GbomlGraph

static method), 35
set_timehorizon() (gboml.GbomlGraph method), 35
solve_cbc() (gboml.GbomlGraph method), 35
solve_clp() (gboml.GbomlGraph method), 36
solve_cplex() (gboml.GbomlGraph method), 36
solve_dsp() (gboml.GbomlGraph method), 36
solve_gurobi() (gboml.GbomlGraph method), 37
solve_highs() (gboml.GbomlGraph method), 37
solve_xpress() (gboml.GbomlGraph method), 37

T
turn_solution_to_dictionary()

(gboml.GbomlGraph method), 37
turn_solution_to_list() (gboml.GbomlGraph

method), 38

55

	About GBOML
	Installation
	Installation via pip and PyPI
	Manual Installation
	Installing Solvers
	Gurobi
	CPLEX
	Xpress
	Cbc/Clp
	DSP
	HiGHS

	Testing

	Abstract GBOML problem
	Grammar Basics
	Identifiers
	Numbers
	Operators
	Expressions
	Logical Conditions
	Comments

	Block Definitions
	Time Horizon
	Global Parameters
	Nodes
	Parameters
	Variables
	Constraints
	Objectives

	Hyperedges
	Parameters
	Constraints

	Advanced Features
	Hierarchical Models
	Importing Nodes and Hyperedges
	Importing Nodes
	Importing Hyperedges

	Useful Idioms
	Repeating Data
	Round Down Integer Division

	How to Use
	Command Line Interface
	Python Interface
	Solver APIs

	Examples
	Microgrid Example
	Problem Description
	GBOML Implementation
	Running the Example

	Remote Hub Example
	Problem Description
	Running the Example

	Python API Example
	Models and papers that use GBOML

	Citing GBOML
	Indices and tables
	Index

